# Accession Number:

## ADA556593

# Title:

## Calculation of the Transition Matrix for the Scattering of Acoustic Waves from a Thin Elastic Spherical Shell Using the COMSOL Multiphysics Finite-Element Code

# Descriptive Note:

## Master's thesis

# Corporate Author:

## NAVAL POSTGRADUATE SCHOOL MONTEREY CA

# Personal Author(s):

# Report Date:

## 2011-12-01

# Pagination or Media Count:

## 53.0

# Abstract:

In acoustics, the so-called Transition, or T-matrix relates the incident and scattered acoustic pressures of an object or scatterer. The T-matrix of a thin steel spherical shell in water has been determined by the COMSOL Multiphysics Finite-Element Code. The shell has an outer radius of 0.5m and a thickness of 1cm. It is driven at a frequency of 474 Hz such that ka1 where k is the acoustic wave number and a is the outer radius of the shell. A standing wave, represented by a spherical Bessel function, is incident onto the shell surface and the corresponding scattering coefficient is computed. The approach is divided into three portions. Firstly, a fluid-loaded rigid sphere is modeled using the Acoustic-Shell Interaction ACSH physics mode to examine the functionality of COMSOL. It also explores the degree of improvement when a refined fluid mesh is applied. Secondly, a thin spherical shell is modeled in the ACSH physics mode. This will examine the credibility of COMSOL to obtain accurate results based on thin shell approximation. Finally, a true 3D finite element, employing the 3D elastic theory, is created using the Acoustic-Structure Interaction ACSI physics mode. The resulting diagonal T-matrix elements achieved an accuracy of 0.1 relative to the analytical T-matrix. Ultimately, these results will be applicable to the modeling of the radiation from an arbitrarily densely-packed array of sonar transducers.

# Descriptors:

# Subject Categories:

- Acoustics